پیش بینی تغییرات کاربری زمین با استفاده از شبکه های عصبی و GIS
نویسندگان
چکیده مقاله:
در این مقاله مدل دگرگونی زمین که مشتمل بر سیستم اطلاعات جغرافیایی (GIS)(1) و شبکههای عصبی مصنوعی (ANNs)(2) میباشد ارائه شده است. در این مدل از عوامل متنوع سیاسی، اجتماعی و محیطی به عنوان متغیرهای پیشگوی استفاده گردیده است. این پژوهش نسخهای از مدل LTM(3) را برای محدوده حوزه آبخیز گرند تریورز در خلیج میشیگان ارائه کرده و نشان میدهد که چگونه عواملی نظیر جادهها، بزرگراهها، خیابانهای محلی، رودخانهها، خطوط ساحلی دریاچههای بزرگ، امکانات تفریحی، دریاچههای داخلی، تراکم کشاورزی و کیفیت منظر میتواند بر الگوی شهرنشینی در حوزه آبخیز ساحلی تاثیرگذار باشد. برای یادگیری الگوهای توسعه در منطقه و محک زدن ظرفیت پیشگویی مدل از شبکههای عصبی مصنوعی و برای گسترش فضایی محرکهای پیشگو و انجام تحلیل فضایی بر روی نتایج از GIS استفاده شده است. سرانجام سهم هر یک از متغیرهای پیشگو تخمین و در مقیاس فضایی نشان داده شده است. در کوچکترین مقیاسها، کیفیت منظر قویترین متغیر پیشگو بود. تأثیرات چندبعدی تغییرات کاربری زمین با استفاده از تأثیرات نسبی سایت (به عنوان مثال کیفیت منظر، خیابانهای محلی) و موقعیت (به عنوان مثال بزرگراهها و جادههای بین بخشی) در مقیاسهای مختلف مورد تفسیر قرار گرفته است. واژههای کلیدی: تغییرات کاربری زمین، شبکههای عصبی مصنوعی، سیستم های اطلاعات جغرافیایی، مدل دگرگونی زمین.
منابع مشابه
پیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی
مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته میشود، یکی از پرکاربردترین مدلها در پیشبینی سریهای زمانی است. اما پیش فرض اصلی این مدل خطی بودن سریهای زمانی میباشد. از سوی دیگر شبکهی عصبی یک تخمین زنندهی عمومی است که الگوهای غیر خطی را بسیار خوب مدلسازی مینماید. دانستن الگوی دادهها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...
متن کاملپیش بینی کوتاه مدت بار استان چهارمحال و بختیاری با استفاده از اجماع شبکه های عصبی
پیشبینی کوتاه مدت بار در بازار برق اهمیت زیادی دارد. از طرفی عوامل مهم تأثیرگذار بر پیشبینی کوتاه مدت بار به ویژگیهای بار الکتریکی و آب و هوایی هر منطقه بستگی دارد، بنابراین با استفاده از دادههای واقعی استان چهارمحال و بختیاری-شامل بار و دما- به پیشبینی کوتاه مدت بار الکتریکی استان پرداختهایم. بدین منظور با استفاده از چهار روش مختلف شبکه عصبی پرسپترون (MLp < /strong>)، مجمعی از شبکه عصبی ...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...
متن کاملپیش بینی تأخیر قطارهای مسافری با استفاده از شبکه های عصبی
تأخیر در قطارهای مسافری از مسائل چالش بر انگیز در راه آهن محسوب شده و علتهای مختلفی دارد، و همین مسئله، پیشبینی تأخیر قطارهای مسافری را بسیار مشکل میکند. هدف این مقاله ارائه مدلی مبتنی بر شبکههای عصبی با دقت بالا برای پیشبینی تأخیر قطارهای مسافری در راه آهن جمهوری اسلامی ایران است. در این مقاله از سه روش مختلف برای ورودی شبکههای عصبی شامل ورود به صورت اعداد حقیقی نرمال شده، تبدیل ورودی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 21 شماره 82
صفحات 22- 26
تاریخ انتشار 2012-08-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023